You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

602 lines
12 KiB

THREE.TypedArrayUtils = {};
/**
* In-place quicksort for typed arrays (e.g. for Float32Array)
* provides fast sorting
* useful e.g. for a custom shader and/or BufferGeometry
*
* @author Roman Bolzern <roman.bolzern@fhnw.ch>, 2013
* @author I4DS http://www.fhnw.ch/i4ds, 2013
* @license MIT License <http://www.opensource.org/licenses/mit-license.php>
*
* Complexity: http://bigocheatsheet.com/ see Quicksort
*
* Example:
* points: [x, y, z, x, y, z, x, y, z, ...]
* eleSize: 3 //because of (x, y, z)
* orderElement: 0 //order according to x
*/
THREE.TypedArrayUtils.quicksortIP = function ( arr, eleSize, orderElement ) {
var stack = [];
var sp = - 1;
var left = 0;
var right = arr.length / eleSize - 1;
var tmp = 0.0, x = 0, y = 0;
var swapF = function ( a, b ) {
a *= eleSize; b *= eleSize;
for ( y = 0; y < eleSize; y ++ ) {
tmp = arr[ a + y ];
arr[ a + y ] = arr[ b + y ];
arr[ b + y ] = tmp;
}
};
var i, j, swap = new Float32Array( eleSize ), temp = new Float32Array( eleSize );
while ( true ) {
if ( right - left <= 25 ) {
for ( j = left + 1; j <= right; j ++ ) {
for ( x = 0; x < eleSize; x ++ ) {
swap[ x ] = arr[ j * eleSize + x ];
}
i = j - 1;
while ( i >= left && arr[ i * eleSize + orderElement ] > swap[ orderElement ] ) {
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( i + 1 ) * eleSize + x ] = arr[ i * eleSize + x ];
}
i --;
}
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( i + 1 ) * eleSize + x ] = swap[ x ];
}
}
if ( sp == - 1 ) break;
right = stack[ sp -- ]; //?
left = stack[ sp -- ];
} else {
var median = ( left + right ) >> 1;
i = left + 1;
j = right;
swapF( median, i );
if ( arr[ left * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
swapF( left, right );
}
if ( arr[ i * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
swapF( i, right );
}
if ( arr[ left * eleSize + orderElement ] > arr[ i * eleSize + orderElement ] ) {
swapF( left, i );
}
for ( x = 0; x < eleSize; x ++ ) {
temp[ x ] = arr[ i * eleSize + x ];
}
while ( true ) {
do i ++; while ( arr[ i * eleSize + orderElement ] < temp[ orderElement ] );
do j --; while ( arr[ j * eleSize + orderElement ] > temp[ orderElement ] );
if ( j < i ) break;
swapF( i, j );
}
for ( x = 0; x < eleSize; x ++ ) {
arr[ ( left + 1 ) * eleSize + x ] = arr[ j * eleSize + x ];
arr[ j * eleSize + x ] = temp[ x ];
}
if ( right - i + 1 >= j - left ) {
stack[ ++ sp ] = i;
stack[ ++ sp ] = right;
right = j - 1;
} else {
stack[ ++ sp ] = left;
stack[ ++ sp ] = j - 1;
left = i;
}
}
}
return arr;
};
/**
* k-d Tree for typed arrays (e.g. for Float32Array), in-place
* provides fast nearest neighbour search
* useful e.g. for a custom shader and/or BufferGeometry, saves tons of memory
* has no insert and remove, only buildup and neares neighbour search
*
* Based on https://github.com/ubilabs/kd-tree-javascript by Ubilabs
*
* @author Roman Bolzern <roman.bolzern@fhnw.ch>, 2013
* @author I4DS http://www.fhnw.ch/i4ds, 2013
* @license MIT License <http://www.opensource.org/licenses/mit-license.php>
*
* Requires typed array quicksort
*
* Example:
* points: [x, y, z, x, y, z, x, y, z, ...]
* metric: function(a, b){ return Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2) + Math.pow(a[2] - b[2], 2); } //Manhatten distance
* eleSize: 3 //because of (x, y, z)
*
* Further information (including mathematical properties)
* http://en.wikipedia.org/wiki/Binary_tree
* http://en.wikipedia.org/wiki/K-d_tree
*
* If you want to further minimize memory usage, remove Node.depth and replace in search algorithm with a traversal to root node (see comments at THREE.TypedArrayUtils.Kdtree.prototype.Node)
*/
THREE.TypedArrayUtils.Kdtree = function ( points, metric, eleSize ) {
var self = this;
var maxDepth = 0;
var getPointSet = function ( points, pos ) {
return points.subarray( pos * eleSize, pos * eleSize + eleSize );
};
function buildTree( points, depth, parent, pos ) {
var dim = depth % eleSize,
median,
node,
plength = points.length / eleSize;
if ( depth > maxDepth ) maxDepth = depth;
if ( plength === 0 ) return null;
if ( plength === 1 ) {
return new self.Node( getPointSet( points, 0 ), depth, parent, pos );
}
THREE.TypedArrayUtils.quicksortIP( points, eleSize, dim );
median = Math.floor( plength / 2 );
node = new self.Node( getPointSet( points, median ), depth, parent, median + pos );
node.left = buildTree( points.subarray( 0, median * eleSize ), depth + 1, node, pos );
node.right = buildTree( points.subarray( ( median + 1 ) * eleSize, points.length ), depth + 1, node, pos + median + 1 );
return node;
}
this.root = buildTree( points, 0, null, 0 );
this.getMaxDepth = function () {
return maxDepth;
};
this.nearest = function ( point, maxNodes, maxDistance ) {
/* point: array of size eleSize
maxNodes: max amount of nodes to return
maxDistance: maximum distance to point result nodes should have
condition (not implemented): function to test node before it's added to the result list, e.g. test for view frustum
*/
var i,
result,
bestNodes;
bestNodes = new THREE.TypedArrayUtils.Kdtree.BinaryHeap(
function ( e ) {
return - e[ 1 ];
}
);
function nearestSearch( node ) {
var bestChild,
dimension = node.depth % eleSize,
ownDistance = metric( point, node.obj ),
linearDistance = 0,
otherChild,
i,
linearPoint = [];
function saveNode( node, distance ) {
bestNodes.push( [ node, distance ] );
if ( bestNodes.size() > maxNodes ) {
bestNodes.pop();
}
}
for ( i = 0; i < eleSize; i += 1 ) {
if ( i === node.depth % eleSize ) {
linearPoint[ i ] = point[ i ];
} else {
linearPoint[ i ] = node.obj[ i ];
}
}
linearDistance = metric( linearPoint, node.obj );
// if it's a leaf
if ( node.right === null && node.left === null ) {
if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
saveNode( node, ownDistance );
}
return;
}
if ( node.right === null ) {
bestChild = node.left;
} else if ( node.left === null ) {
bestChild = node.right;
} else {
if ( point[ dimension ] < node.obj[ dimension ] ) {
bestChild = node.left;
} else {
bestChild = node.right;
}
}
// recursive search
nearestSearch( bestChild );
if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
saveNode( node, ownDistance );
}
// if there's still room or the current distance is nearer than the best distance
if ( bestNodes.size() < maxNodes || Math.abs( linearDistance ) < bestNodes.peek()[ 1 ] ) {
if ( bestChild === node.left ) {
otherChild = node.right;
} else {
otherChild = node.left;
}
if ( otherChild !== null ) {
nearestSearch( otherChild );
}
}
}
if ( maxDistance ) {
for ( i = 0; i < maxNodes; i += 1 ) {
bestNodes.push( [ null, maxDistance ] );
}
}
nearestSearch( self.root );
result = [];
for ( i = 0; i < maxNodes; i += 1 ) {
if ( bestNodes.content[ i ][ 0 ] ) {
result.push( [ bestNodes.content[ i ][ 0 ], bestNodes.content[ i ][ 1 ] ] );
}
}
return result;
};
};
/**
* If you need to free up additional memory and agree with an additional O( log n ) traversal time you can get rid of "depth" and "pos" in Node:
* Depth can be easily done by adding 1 for every parent (care: root node has depth 0, not 1)
* Pos is a bit tricky: Assuming the tree is balanced (which is the case when after we built it up), perform the following steps:
* By traversing to the root store the path e.g. in a bit pattern (01001011, 0 is left, 1 is right)
* From buildTree we know that "median = Math.floor( plength / 2 );", therefore for each bit...
* 0: amountOfNodesRelevantForUs = Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* 1: amountOfNodesRelevantForUs = Math.ceil( (pamountOfNodesRelevantForUs - 1) / 2 );
* pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* when recursion done, we still need to add all left children of target node:
* pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
* and I think you need to +1 for the current position, not sure.. depends, try it out ^^
*
* I experienced that for 200'000 nodes you can get rid of 4 MB memory each, leading to 8 MB memory saved.
*/
THREE.TypedArrayUtils.Kdtree.prototype.Node = function ( obj, depth, parent, pos ) {
this.obj = obj;
this.left = null;
this.right = null;
this.parent = parent;
this.depth = depth;
this.pos = pos;
};
/**
* Binary heap implementation
* @author http://eloquentjavascript.net/appendix2.htm
*/
THREE.TypedArrayUtils.Kdtree.BinaryHeap = function ( scoreFunction ) {
this.content = [];
this.scoreFunction = scoreFunction;
};
THREE.TypedArrayUtils.Kdtree.BinaryHeap.prototype = {
push: function ( element ) {
// Add the new element to the end of the array.
this.content.push( element );
// Allow it to bubble up.
this.bubbleUp( this.content.length - 1 );
},
pop: function () {
// Store the first element so we can return it later.
var result = this.content[ 0 ];
// Get the element at the end of the array.
var end = this.content.pop();
// If there are any elements left, put the end element at the
// start, and let it sink down.
if ( this.content.length > 0 ) {
this.content[ 0 ] = end;
this.sinkDown( 0 );
}
return result;
},
peek: function () {
return this.content[ 0 ];
},
remove: function ( node ) {
var len = this.content.length;
// To remove a value, we must search through the array to find it.
for ( var i = 0; i < len; i ++ ) {
if ( this.content[ i ] == node ) {
// When it is found, the process seen in 'pop' is repeated
// to fill up the hole.
var end = this.content.pop();
if ( i != len - 1 ) {
this.content[ i ] = end;
if ( this.scoreFunction( end ) < this.scoreFunction( node ) ) {
this.bubbleUp( i );
} else {
this.sinkDown( i );
}
}
return;
}
}
throw new Error( "Node not found." );
},
size: function () {
return this.content.length;
},
bubbleUp: function ( n ) {
// Fetch the element that has to be moved.
var element = this.content[ n ];
// When at 0, an element can not go up any further.
while ( n > 0 ) {
// Compute the parent element's index, and fetch it.
var parentN = Math.floor( ( n + 1 ) / 2 ) - 1,
parent = this.content[ parentN ];
// Swap the elements if the parent is greater.
if ( this.scoreFunction( element ) < this.scoreFunction( parent ) ) {
this.content[ parentN ] = element;
this.content[ n ] = parent;
// Update 'n' to continue at the new position.
n = parentN;
} else {
// Found a parent that is less, no need to move it further.
break;
}
}
},
sinkDown: function ( n ) {
// Look up the target element and its score.
var length = this.content.length,
element = this.content[ n ],
elemScore = this.scoreFunction( element );
while ( true ) {
// Compute the indices of the child elements.
var child2N = ( n + 1 ) * 2, child1N = child2N - 1;
// This is used to store the new position of the element, if any.
var swap = null;
// If the first child exists (is inside the array)...
if ( child1N < length ) {
// Look it up and compute its score.
var child1 = this.content[ child1N ],
child1Score = this.scoreFunction( child1 );
// If the score is less than our element's, we need to swap.
if ( child1Score < elemScore ) swap = child1N;
}
// Do the same checks for the other child.
if ( child2N < length ) {
var child2 = this.content[ child2N ],
child2Score = this.scoreFunction( child2 );
if ( child2Score < ( swap === null ? elemScore : child1Score ) ) swap = child2N;
}
// If the element needs to be moved, swap it, and continue.
if ( swap !== null ) {
this.content[ n ] = this.content[ swap ];
this.content[ swap ] = element;
n = swap;
} else {
// Otherwise, we are done.
break;
}
}
}
};